Name of Programme Programme Code	: CE/ME/MT Engineering : 01/04/05	
Name of Course Course Code	: APPLIED MAHEMATICS III : SC281	

Teaching Scheme:

	Hours / Week	Total Hours
Theory	02	32
Term work / Practical	01	16

Evaluation:

	Progressive Assessment	Semester End Examination							
		Theory	Practical	Oral	Term work				
Duration	Two class tests of 60 min. duration	Hrs							
Marks	20	80							

Rationale:

- Applied mathematics is designed for its applications in engineering and technology
- The student shall learn various techniques in integration and differential equations and use these techniques to their related Engineering problems.

Course Outcomes:

After completing this course students will be able to

- **1.** Apply the definition of integration as inverse of differentiation to solve problems.
- 2. Apply various methods of integration..
- 3. Apply Mathematical principle to solve engineering problems.
- 4. Apply differential equation for solving problems in different engineering fields.
- 5. Apply the knowledge of probability to solve the examples related to the production process.
- 6. Draw and come to a valid conclusion.
- 7. Locate the exceptional and critical points in an engineering system.

Course Contents: (Course Name: Applied mathematics III – SC281)

A. Theory :

Specific Learning Outcomes (Cognitive Domain)	Topics and subtopics	Hrs
Units 1 : Integration		10
Units 1 : Integration 1.Define integration as anti derivative. 2. Integrate function using different method Unit 2: Definite integrals 1 Solve problems on definite	 1.1 Definitions, standard formulae, integration of algebraic sum of two or more functions, integration by substitutions and by trigonometric transformations, integration of 1/ax²+bx+c, 1/√ax²+ bx+c, integration by parts, integration by partial fractions. 2.1 Definition and properties of definite 	10 04
integrals using the properties	integrals Example based on these properties.	
Unit 3: Applications of integrat	tion	04
1Find area under the curve and between the curves. 2.Find Volume of solid of revolution	3.1Area under the curve and area between two curves. Volume of solid of revolution.	
Unit 4: Differential Equations	-	05
 Define order and degree of differential equation Solve the differential equation of first order and first degree Solve different engineering problems using differential equation 	 4.1 Definition, order and degree of differential equations. Formation of differential equations. Solution of differential equations : (using following methods) i) Variable separable (ii) Reducible to variable separable. (iii) Homogeneous differential equations. (iv) Exact diff. equations. (v) Linear differential equations. 	
Unit 5: Statistics		05
 1.Find mean , median, mode of any data 2. Find the range, mean deviation, standard deviation and consistency of any data 	 5.1- <u>Measures of central tendency</u>: (a)Mean (b) Median (c) Mode <u>Measures of dispersion</u>: a) Standard deviation (b) Co-efficient of variance 	
Unit 6: Probability	·	04
 Define Probability Define addition and multiplication theorems . Solve different engineering problems related to probability process 	 6.1 Defination of Random experiment, sample space, event, occurrence of events and types of events-(impossible, mutually exclusive, exahaustive, equally likely) Defination of probability , addition and multiplication theorems of probability. 	
	Total Hrs.	32

Practical No.	Specific Learning Outcomes (Psychomotor Domain)	Units	Hrs.
1.	Integration based on standard formulae.		1
2.	Integration by substitution method	• •	1
3.	Integration on the type $1/ax^2+bx+c$, $1/\sqrt{ax^2+bx+c}$, $1/asinx+bcosx+c$, $1/asin^2x+bcos^2x+c$.	Integration	1
4.	Integration using By Part Rule and integration by partial fraction method.		1
5	Examples on Definite integral and it's properties	Definite integrals.	1
6.	Examples on Mean and R.M.S. value	Applications of integration	1
7.	Examples on order ,degree and formation of differential equation.	Differential Equation	1
8.	Solution of first order first degree D.E. using various methods.	Differential Equation	1
9.	Examples on measures of central tendency (mean , median , mode)	Statistics	1
10	Examples on measures of dispersion (Standard deviation, coefficient of variance)	Statistics	1
11	Examples on event and probability.		1
12	Examples on addition and multiplication theorem of probability.	Probability	1
	Skill Test		02
		Total Hrs.	14

B. List of Practicals /Laboratory Experiences/Assignments:

Instructional Strategy:

Sr.No	Торіс	Instructional Strategy
1	Integration	Class room teaching, chalk board
2	Definite Integrals	Class room teaching, chalk board
3	Applications of	Class room teaching, chalk board
	integration	
4	Differential Equation	Class room teaching, chalk board
5	Statistics	Class room teaching, chalk board
6	Probability	Class room teaching, chalk board

Unit	Units	Levels f	Total		
No.		R	U	Α	Marks
01	Integration	08(04)	16(08)	00(00)	24(12)
02	Definite Integrals	04(04)	04(00)	00(00)	08(04)
03	Applications of integration	00(00)	00(00)	08(04)	08(04)
04	Differential Equation	04(00)	08(04)	04(04)	16(08)
05	Statistics	04(04)	04(02)	04(00)	12(06)
06	Probability	04(02)	04(04)	04(00)	12(06)
	Total	24(14)	36(18)	20(08)	80(40)

Specification Table for Theory Paper:

R-Remember

U – Understand

A – Analyze / Apply

Question Paper Profile For Theory Paper:

Q.]	Bit	1]	Bit 2	2]	Bit	3]	Bit 4	1	I	Bit s	5]	Bit	6	
No	Т	L	Μ	Т	L	Μ	Т	L	Μ	Т	L	Μ	Т	L	Μ	Т	L	Μ	option
01	1	R	4	1	R	4	1	U	4	1	U	4	1	U	4	1	U	4	4/6
02	1	U	4	2	R	4	2	R	4	2	U	4	3	А	4	3	А	4	4/6
03	4	R	4	4	U	4	4	U	4	4	U	4	4	А	4	4	A	4	4/6
04	5	R	4	5	R	4	5	R	4	6	А	4	6	U	4	6	А	4	4/6
05	1	R	2	1	R	2	1	U	2	1	U	2	3	Α	2	3	A	2	8/12
	5	U	2	5	U	2	5	U	2	6	R	2	6	R	2	6	R	2	0/12

T= Unit/Topic Number

L= Level of Question

M = Marks

R-Remember

U-Understand

A-Analyze/ Apply

Assessment and Evaluation Scheme:

	V	What	To Wh om	Frequency	Max Mar ks	Min Mar ks	Evidence Collected	Course Outcome s
y.	ssessment)	PT	its	Two PT (average of two tests will be computed)	20		Test Answer sheets	1,2,3,4,5, 6,7
lent Theory	CA (Continuous Assessment)	Class Room Assignment s	Students	Assignments			Assignme nt Book	1,2,3,4,5, 6,7
sessm	(Co			TOTAL	20			
Direct Assessment	TEE (Term End Examination)	End Exam	Students	End Of the Course	80	28	Theory Answer sheets	1,2,3,4,5, 6,7
I	ous ent)		ts					
ent Practical	CA (Continuous Assessment)		Students					
Direct Assessment	TEE (Term End Examination)		Students					
Indirect Assessment		Student Feedback on course		After First PT	Stud	ent feed	l back form	
Indi Asses	End (Of Course	urse End Of The Course Questionnaires					

(Course Name: Applied mathematics III – SC281)

Scheme Of Practical Evaluation:

S.N.	Description	Max. Marks
1	Observations,	N.A.
2	Calculations and Result	N.A.
3	Viva voce	N.A.
	TOTAL	

Mapping Course Outcomes With Program Outcomes:

Course				Prog	gram (Outcon	nes (P	Os)		
Outcomes	1	2	3	4	5	6	7	8	9	10
1	3	3	2	1	1	1	1	3	1	2
2	3	3	2	1	1	1	1	2	1	2
3	3	2	3	2	1	1	2	2	1	3
4	3	2	3	2	1	1	2	2	1	3
5	3	2	3	2	1	1	2	2	1	3
6	3	2	2	1	1	1	2	2	2	1
7	2	2	2	1	1	1	2	2	2	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Reference & Text Books:

S.N.	Title	Author, Publisher, Edition and Year of publication	ISBN Number
1	Higher Engineering Mathematics	Khanna Publishers, New Delhi Grewal B.S	
2	Engineering Mathematics Vol.II	Satya Prakashan, New Delhi Vishwanath	
3	Mathematics for Polytechnic students	Pune Vidyarthi Griha Prakashan S.P. Deshpande	
4	Engineering Mathematics Part II	S. Chand & Co. Ltd. Delhi ,H.K. Dass	

S.N	Name	Designation	Institute / Industry
1.		Chairman PBOS	
2.	Shri V.B.Shinde	Faculty from Institute	Govt. Polytechnic Pune
3.		Faculty from Institute	
4.		Consultant from Industry	
5.		Faculty from nearby Institute	
6.		R.B.T.E.Representative	

List Of Experts & Teachers Who Contributed For This Curriculum:

Prepared by

()	(Member Secretary PBOS)	(Chairman PBOS)
-----	-------------------------	-----------------